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Abstract After classifying indecomposable quasi-classical Lie algebras in low dimension,
and showing the existence of non-reductive stable quasi-classical Lie algebras, we focus on
the problem of obtaining sufficient conditions for a quasi-classical Lie algebras to be the
contraction of another quasi-classical algebra. It is illustrated how this allows to recover the
Yang-Mills equations of a contraction by a limiting process, and how the contractions of an
algebra may generate a parameterized families of Lagrangians for pairwise non-isomorphic
Lie algebras.
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1 Introduction

In many physical applications one is often confronted to consider Lie algebras other than
semisimple and endowed with a non-degenerate symmetric bilinear form that is associative
with respect to the bracket [2, 10, 25]. For the classical case, the Killing metric tensor pro-
vides this form, with the additional advantage of being related to the adjoint representation
[24]. However, even for reductive Lie algebras this approach fails, and we have to consider
a different representation, due to degeneracy of the trace form. This suggests to consider
the problem in general, which gives rise to the class of quasi-classical Lie algebras [20].
This approach allows for example to treat non-Abelian Yang-Mills gauge theories in unified
manner, covering the Abelian and semisimple cases, and even extending it to the solvable
case [18, 22, 26]. The existence of a bilinear form with the required properties can be char-
acterized, like in the semisimple case, by the existence of a quadratic Casimir operator of
a certain form [9, 20]. Although it has been proved in that only those gauge theories based
upon compact algebras remain ghost-free when quantized, the general case still remains of
interest for the analysis of solutions of the Yang-Mills equations [10, 16].
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In the generalized theory, based on non-compact Lie algebras, the classical Lagrangian
is replaced by

L(x) = gijFμν,iF
μν

,j , (1)

where gij are the components of the non-degenerate form on g. Given an element Y ∈ g, it
is straightforward to verify that for any Xi,Xj ∈ g we have the invariance condition

((expY )−1Xi(expY ), (expY )−1Xj(expY )) = (Xi,Xj ),

thus, taking a function ηi(x) of the spacetime coordinate x and defining g(x) = exp(ηi(x)

× Xi), the local transformations defined by

A′
μ = g−1(x)Aμ(x)g(x) − g−1(x)∂μg(x), (2)

F ′
μν = g−1(x)Fμν(x)g(x) (3)

leave the Lagrangian (1) invariant and consistently reproduce the equations of motion

[Aμ(x),Aν(x)] + ∂λFλμ(x) = 0, (4)

where, as usual,

Aμ(x) = XaA
a
μ(x), (5)

Fμν(x) = ∂μAν(x) − ∂νAμ(x) + [Aμ(x),Aν(x)]. (6)

Solutions of these equations for nilpotent and solvable Lie algebras have been analyzed
for various types of Lie algebras in different situations, like the curvature zero case Fμν = 0
or the sourceless case with constant potentials [1, 25].

In this work we focus on the properties of quasi-classical Lie algebras with respect to con-
tractions. We point out that non-Abelian quasi-classical algebras can arise as contractions of
Lie algebras g � g′ that do not carry a non-degenerate form, or even don’t possess Casimir
operators. However, if the quadratic Casimir operator is the result of a limiting process of
a quadratic invariant of the contracted algebra, then both algebras are quasi-classical. This
will allow us to deduce the gauge fields and the Lagrangian of the ontraction by limits of the
corresponding quantities over g.

We first analyze some structural properties of Lie algebras of this type, especially quasi-
classical Lie algebras that are either nilpotent or have a nontrivial Levi decomposition. The
analysis in low dimension suggests that contractions of reductive (especially semisimple)
Lie algebras provide all quasi-classical non-Abelian Lie algebras. This is however not true
in general, as will be established by a counterexample of a stable quasi-classical Lie algebras
in dimension 10. In Sect. 4 we study under which conditions a non-Abelian quasi-classical
Lie algebra arises as the contraction of another Lie algebra with the same property. These
results are applied to the contraction procedure of the Yang-Mills equations for contractions
that preserve the property of being quasi-classical.

2 Quasi Classical Lie Algebras

Let g be a Lie algebra and (., .) a symmetric bilinear form that satisfies the associativity
condition

(X, [Y,Z]) = ([X,Y ],Z), ∀X,Y,Z ∈ g. (7)
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The form is non-degenerate if the radical R = {X ∈ g | (X,Y ) = 0,∀Y } reduces to zero.
Following the notations of [20], we call a Lie algebra g quasi-classical (short QCLA) if it
possesses a bilinear symmetric non-degenerate form (., .) that satisfies (7). It follows at once
that any reductive Lie algebra, i.e., any direct sum of a semisimple and Abelian Lie algebra,
is quasi-classical. In [21] it was shown that the most general non-Abelian gauge theory is
based on QCLAs.

In particular, a characterization of QCLAs in terms of quadratic operators can be given
[20], in complete analogy to the classical semisimple case proved in [9]:

Proposition 1 A Lie algebra g is quasi-classical if and only if it possesses a quadratic
Casimir operator C2 = gabXaXb such that the symmetric matrix gab satisfies the constraint

gabgbc = δac, (8)

where gab is the inverse of gab .

Those properties of QCLA not using explicitly the adjoint representation of the algebra
constitute natural generalizations of those observed for the Killing tensor in semisimple Lie
algebras. Among the elementary properties of quasi-classical algebras, we enumerate the
following three, the proof of which is completely analogous to the semisimple case with the
Killing metric tensor:

(i) If g is quasi-classical complex, then any of its real forms is quasi-classical.
(ii) If g1 and g2 are quasi-classical, then their direct sum is also quasi-classical.

(iii) If a quasi-classical Lie algebra g admits an ideal I such that (., .)|I is non-degenerate,
then I⊥ = {X ∈ g | (X,I) = 0} is also a quasi-classical ideal and g is decomposable.

Lemma 1 If the quasi-classical Lie algebra g = g1 ⊕g2 is decomposable and the restriction
of (., .) to the centre Z(g) is degenerate, then both g1 and g2 are quasi-classical algebras.

Proof If g1 were not quasi-classical, then there exists a nonzero element z /∈ [g1,g1] such
that (x, z) = 0 ∀x ∈ g1. In particular, z is not in the centre of g. Let y ∈ g1 such that
[x, y] �= 0. By non-degeneracy, there exists an x ∈ g such that (x, [y, z]) = ([x, y], ) �= 0. By
the decomposition, x belongs to g1 and therefore [x, y] ∈ [g1,g1], contradicting the choice
of z. �

These properties reduce the classification of quasi-classical Lie algebras to the analysis of
indecomposable Lie algebras, i.e., those which do not decompose as a direct sum of ideals.
We also remark that property (iii) above does not exclude the possibility that a QCLA has
quasi-classical ideals, but refers to the induced bilinear form on the ideal.

Proposition 2 Let R be a representation of a semisimple Lie algebra s such that the multi-
plicity of the trivial representation �0 in R is zero. If g

−→⊕ R(dimR)L1 is quasi-classical, then
the restriction of the inner product (., .) to the Abelian radical r = (dimR)L1 is degenerate.

Proof Since mult�0R = 0, for any Y in the radical there exists X ∈ s and Y ′ in the radical
such that Y = [X,Y ′]. By the associativity of the bilinear form (., .) we have

([X,Yi], Yj ) = (r, Yj ) = (X, [Yi, Yj ]) = 0,

showing that the restriction (., .)|r to the radical is degenerate. �
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As a consequence of this result, no non-degenerate inner product in the Abelian Lie alge-
bra (dimR)L1 can be extended to the semidirect product g

−→⊕ R(dimR)L1 without violating
the associativity condition (7).

Corollary 1 If mult�0R = 0 and g
−→⊕ R(dimR)L1 is a QCLA, then dimR ≤ dim s.

Trivial examples of algebras having nontrivial Levi decomposition and being quasi-
classical are the semidirect products s

−→⊕ ads(dim s)L1 [5]. We point out that the preceding
corollary does not hold if the radical is not Abelian.

Proposition 3 Let g be a indecomposable quasi-classical Lie algebra of dimension n ≤ 9
and having a nontrivial Levi subalgebra. Then g is isomorphic to one of the following Lie
algebras

(i) L6,1 = so(3)
−→⊕ ad3L1 with structure tensor

C3
12 = 1, C2

13 = −1, C1
23 = 1, C6

15 = 1, C5
16 = −1, C6

24 = −1,

C4
26 = 1, C5

34 = 1, C4
35 = −1.

(ii) L6,4 = sl(2,R)
−→⊕ ad3L1 with structure tensor

C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 2, C6
16 = −2, C4

25 = 2,

C5
26 = 1, C5

34 = 1, C6
35 = 2.

(iii) L9,11 = so(3)
−→⊕ 2adA6,3 with structure tensor

C3
12 = 1, C2

13 = −1, C1
23 = 1, C6

15 = 1, C5
16 = −1, C9

18 = 1,

C8
19 = −1, C6

24 = −1, C4
26 = 1, C9

27 = −1, C7
29 = 1, C5

34 = 1,

C4
35 = −1, C8

37 = 1, C7
38 = −1, C9

45 = 1, C8
46 = −1, C7

56 = 1.

(iv) L9,62 = sl(2,R)
−→⊕ 2adA6,3 with structure tensor

C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 2, C6
16 = −2, C7

17 = 2,

C9
19 = −2, C4

25 = 2, C5
26 = 1, C7

28 = 2, C8
29 = 1, C5

34 = 1,

C6
35 = 2, C8

37 = 1, C9
38 = 2, C7

45 = 2, C8
46 = 1, C9

56 = 2.

where [Xi,Xj ] = Ck
ijXk over the basis {X1, . . . ,Xn} of g.

We remark that both nine dimensional algebra have the same complexification, and have
indeed a quasi-classical radical. The proof follows from the classification of Lie algebras
with nontrivial Levi decomposition of (Turkowski [28, 29]) and the analysis of their invari-
ants [4].

For solvable quasi-classical Lie algebras various general constructions exist (see e.g.
[17, 22]), while the nilpotent case was analyzed in [13]. We now prove that a non-degenerate
quadratic Casimir operator imposes some restrictions on the nilindex of a nilpotent Lie al-
gebra.
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Proposition 4 A nilpotent quasi-classical Lie algebra n of dimension n has at most nilindex
n − 2.

Proof If n is nilpotent of nilindex n − 1, then we can always find a basis {X1, . . . ,Xn} such
that [X1,Xi] = Xi+1 for 2 ≤ i ≤ n − 1. Realizing the Lie algebra by differential opera-
tors ̂Xi = Ck

ij xk
∂

∂xj
in C∞(n∗), the obtainment of Casimir operators is equivalent to obtain

the polynomial solutions F(x1, . . . , xn) of the system of PDEs ̂XiF = 0 and symmetrize
them [27]. If we consider the differential operator associated to X1:

̂X1(F ) =
n−1
∑

k=2

xk+1
∂F

∂xk

= 0, (9)

(9) has the general quadratic solution

C2(2m) = a0x
2
1 +

m−1
∑

k=1

ak

(

1

2
x2

m+k +
m−k
∑

j=1

(−1)j xm+k−j xm+k+j

)

+ amx1x2m + am+1x
2
2m

if n = 2m, and

C2(2m − 1) = a0x
2
1 +

m−2
∑

k=1

ak

(

1

2
x2

m+k +
m−k−1
∑

j=1

(−1)j xm+k−j xm+k+j

)

+ amx1x2m−1 + am+1x
2
2m−1,

if n = 2m − 1. For the latter solution we see that ∂C2(2m−1)

∂x2
= 0, thus we never obtain a

non-degenerate quadratic Casimir operator. It remains to see that the even dimensional case
cannot be quasi-classical. If we symmetrize C2(2m) and write it in matrix form, we obtain
that it is non-degenerate if and only if a0a1 �= 0. Now, considering the differential operator
̂X2 we obtain

̂X2(C2(2m)) = −x3
∂C2(2m)

∂x1
− Ck

2j xk

∂C2(2m)

∂xj

= −2a0x1x3 − Ck
2j xk

∂C2(2m)

∂xj

.

Since n is nilpotent, we have X1,X2 /∈ [n,n]. This means that if C2(2m) is a solution of ̂X2,
then the term −2a0x1x3 must cancel, i.e., a0 = 0. But this implies that the quadratic operator
is degenerate, thus n is not quasi-classical. �

3 Classification of QCLAs up to Dimension 6

The classification of low dimensional quasi-classical Lie algebras follows from the general
classification of real Lie algebras and their invariants [3, 7, 23]. By the preceding results,
it suffices to consider the indecomposable algebras. The quasi-classical solvable Lie alge-
bras in dimension n ≤ 6 are given in Table 1. It will turn out that in low dimension, the
contractions of reductive algebras allow to recover the quasi-classical algebras.

We recall that a contraction g � g′ of a Lie algebra g onto g′ is given by the brackets

[X,Y ]′ := lim
t→∞�−1

t [�t(X),�t(Y )], (10)
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Table 1 Indecomposable solvable QCLAs in dimension ≤ 6

g Brackets Quadratic Casimir

(non-symmetrized)

A4,8 [X2,X3] = X1 [X2,X4] = X2

[X3,X4] = −X3 x2x3 − x1x4

A4,10 [X2,X3] = X1 [X2,X4] = −X3

[X3,X4] = X2 x2
2 + x2

3 + 2x1x4

A5,3 [X3,X4] = X2 [X3,X5] = X1

[X4,X5] = X3 x2
3 + 2x2x5 − 2x1x4

A6,3 [X1,X2] = X6 [X1,X3] = X4

[X2,X3] = −X5 x1x5 − x2x4 + x3x6

gα=0
6,82 [X2,X4] = X1 [X3,X5] = X1

λλ1 �=0 [X2,X6] = λX2 [X3,X6] = λ1X3 λx2x4 + λ1x3x5 − x1x6

[X4,X6] = −λX4 [X5,X6] = −λ1X5

gα=0
6,83 [X2,X4] = X1 [X3,X5] = X1

λ �=0 [X2,X6] = λX2 + X3 λ(x2x4 + x3x5) + x3x4 − x1x6

[X3,X6] = λX3 [X4,X6] = −λX4

[X5,X6] = −X4 − λX5

gα=0
6,88

ν0 �=0
μ0 �=0

[X2,X4] = X1 [X3,X5] = X1

[X2,X6] = μ0X2 + ν0X3 [X3,X6] = μ0X3 − ν0X2 μ0(x2x4 + x3x5) − x1x6

[X4,X6] = ν0X5 − μ0X4 [X5,X6] = −ν0X4 − μ0X5 + ν0(x3x4 − x2x5)

gα=0
6,89 [X2,X4] = X1 [X3,X5] = X1

sν0 �=0 [X2,X6] = sX2 [X3,X6] = ν0X5 2x1x6 − 2sx2x4 − ν0(x2
3 + x2

5 )

[X4,X6] = −sX4 [X5,X6] = −ν0X3

gα=0
6,90 [X2,X4] = X1 [X3,X5] = X1

ν0 �=0 [X2,X6] = X4 [X3,X6] = ν0X5 2x1x6 + x2
2 − x2

4 − ν0(x2
3 + x2

5 )

[X4,X6] = X2 [X5,X6] = −ν0X3

g6,91 [X2,X4] = X1 [X3,X5] = X1

[X2,X6] = X4 [X3,X6] = X5 2x1x6 + x2
2 − x2

4 − (x2
3 + x2

5 )

[X4,X6] = X2 [X5,X6] = −X3

gα=0
6,92 [X2,X4] = X1 [X3,X5] = X1

μ0ν0 �=0 [X2,X6] = ν0X3 [X3,X6] = −μ0X2 −x1x6 − μ0x2x5 + ν0x3x4

[X4,X6] = μ0X5 [X5,X6] = −ν0X4

g∗
6,92 [X2,X4] = X5 [X1,X3] = X5

p = 0 [X1,X6] = X3 [X2,X6] = X4 x2
1 + x2

2 + x2
3 + x2

4 − 2x5x6

[X3,X6] = −X1 [X4,X6] = −X2

gα=0
6,93 [X2,X4] = X1 [X3,X5] = X1

ν0 �=0 [X2,X6] = X4 + ν0X5 [X3,X6] = ν0X4 ν0(x2x3 + x4x5) − x1x6 + x2
4−x2

2
2

[X4,X6] = X2 − ν0X3 [X5,X6] = −ν0X2
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where �t is an automorphism of g for all t < ∞. The physically most interesting type of
contractions are the so called generalized Inönü-Wigner contractions (gen. IW in short),
introduced in [12, 31], and given by automorphism of the type

�t(Xi) = t−ni Xi, ni ∈ Z. (11)

Now, if F(X1, . . . ,Xn) = αi1···ipXi1 · · ·Xip is a Casimir operator of degree p, then the trans-
formed invariant takes the form

F(�t(X1), . . . ,�t (Xn)) = t
ni1 +···+nip αi1···ipXi1 · · ·Xip . (12)

Now, taking

M = max{ni1 + · · · + nip | αi1···ip �= 0}, (13)

the limit

F ′(X1, . . . ,Xn) = lim
t→∞ t−MF(�t(X1), . . . ,�t (Xn)) =

∑

ni1 +···+nip =M

αi1···ipXi1 · · ·Xip (14)

provides a Casimir operator of degree p of the contraction g′. This procedure allows to
obtain invariants of contractions from invariants in the contracting Lie algebra [30].

Proposition 5 Any non-semisimple quasi-classical Lie algebra g of dimension n ≤ 6 is a
generalized Inönü contraction of a reductive Lie algebra.

Proof For the Lie algebras A4,8,A4,10,A5,3,A6,3 we obtain the contraction explicitly, while
for the six dimensional solvable algebras of Table 1 we proceed by means of deformation
theory [14].

The contraction sl(2,R)⊕L1 � A4,8 is described in [15], while so(3)⊕L1 � A4,10, not
contained in that list, is given by the automorphism

�t(X1) = 1

t2
X1, �t (X2) = 1

t
X2, �t (X3) = 1

t
X3, �t (X4) = X1 + X4.

It is trivial to verify that the contraction is gen. IW. We remark that A4,10 is also a contraction
of sl(2,R)⊕L1. For the nilpotent Lie algebra A5,3 we obtain a gen. IW contraction so(3)⊕
2L1 � A5,3 given by the automorphism

�t(X1) = 1

t3
X1, �t (X2) = 1

t3
X2, �t (X3) = 1

t2
X3,

�t (X4) = 1

t
(X1 + X4), �t (X5) = 1

t
(X2 + X5).

Finally, A6,3 arises as gen. IW contraction of so(3)⊕ 3L1 by considering the automorphism

�t(X1) = 1

t2
X1, �t (X2) = 1

t2
X2, �t (X3) = 1

t2
X3,

�t (X4) = 1

t
(X1 + X4), �t (X5) = 1

t
(X2 + X5), �t (X6) = 1

t
(X3 + X6).

We now turn our attention to the solvable non-nilpotent QCLAs in dimension six. We
prove the statement for g

0,λ,λ1
6,82 , the argument being the same for the remaining algebras. If
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the algebra is a contraction, then there exists a deformation that reverses it [14, 31]. Thus
we analyze the invertible deformations of g

0,λ,λ1
6,82 and see whether they lead to reductive Lie

algebras. Computing the second cohomology group of the Lie algebra (see e.g. [11]), we

find the nontrivial cocycle ϕ ∈ H 2(g
0,λ,λ1
6,82 ,g

0,λ,λ1
6,82 ) given by

ϕ(X1,X3) = X3, ϕ(X1,X5) = −X5, ϕ(X2,X4) = λ−1
1 X6.

It is straightforward to see that the formal deformation g
0,λ,λ1
6,82 + ϕ given by the bracket

[X,Y ]ϕ = [X,Y ] + ϕ(X,Y ) defines a Lie algebra. Moreover, the derived subalgebra has
dimension six, thus the deformation is a perfect Lie algebra. Computing the Killing tensor
of g

0,λ,λ1
6,82 + ϕ we obtain the matrix

κ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 0 0 0 0 −2λ1

0 0 0 −2 λ
λ1

0 0
0 0 0 0 2 0
0 −2 λ

λ1
0 0 0 0

0 0 2 0 0 0
−2λ1 0 0 0 0 2(λ2

1 + λ2)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(15)

with det(κ) = 64λ4λ−2
1 �= 0 since λ1λ �= 0. This proves that the deformation g

0,λ,λ1
6,82 + ϕ is

semisimple. Now, considering the automorphism

�(X1) = X′
1 = 1

t2
X1, �(Xi) = X′

i = 1

t
Xi, �(X6) = X′

6 = X6

of g
0,λ,λ1
6,82 + ϕ we get the brackets

[X′
1,X

′
3] = 1

t2
X′

3, [X′
1,X

′
5] = − 1

t2
X′

5, [X′
2,X

′
4] = X′

1 + 1

λ1t2
X′

6,

[X′
2,X

′
6] = λ�(X2), [X′

3,X
′
5] = X′

1, [X′
3,X

′
6] = λ1X

′
3,

[X′
4,X

′
6] = −λX′

4, [X′
5,X

′
6] = −λ1X

′
5.

It follows at once that for t → ∞ we obtain the contraction onto g
0,λ,λ1
6,82 . For the remain-

ing algebras, a (invertible) deformation leading to a reductive Lie algebra is indicated in
Table 2. �

In view of this result, it is natural to ask whether any non-semisimple QCLA is ob-
tained by contraction of a reductive Lie algebra. Although no complete classification of Lie
algebras in dimension n ≥ 7 exists, the following example shows that a QCLA is not neces-
sarily the contraction of a reductive Lie algebra. Consider the ten dimensional Lie algebra
g = sl(2,R)

−→⊕ D1⊕2D1/2r given by the brackets

[X1,X2] = 2X2, [X1,X3] = −2X3, [X2,X3] = X1, [X1,X4] = X4,

[X1,X5] = −X5, [X1,X6] = X6, [X1,X7] = −X7, [X1,X8] = 2X8,

[X1,X10] = −2X10, [X2,X5] = X4, [X2,X7] = X6, [X2,X9] = 2X8,

[X2,X10] = X9, [X3,X4] = X5, [X3,X6] = X7, [X3,X8] = X9,

[X3,X9] = 2X10, [X4,X6] = 2X8, [X4,X7] = X9, [X5,X6] = X9,

[X5,X7] = 2X10.
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Table 2 Deformation of solvable QCLAs to reductive Lie algebras

g Defining cocycle of deformation

g6,82 ϕ(X1,X3) = X3, ϕ(X1,X5) = −X5, ϕ(X2,X4) = 1
λ1

X6

g6,83 ϕ(X1,X2) = −λX3, ϕ(X1,X5) = λX4, ϕ(X2,X5) = X6

g6,88 ϕ(X1,X2) = γX2, ϕ(X1,X3) = γX3, ϕ(X1,X4) = γX4,

ϕ(X1,X5) = γX5, ϕ(X2,X4) = αX6, ϕ(X2,X5) = βX6,

ϕ(X3,X4) = −βX6, ϕ(X3,X5) = αX6, γ = αμ + βν, βμ = αν

g6,89 ϕ(X1,X2) = X2, ϕ(X1,X4) = −X4, ϕ(X3,X5) = 1
s X6

g6,90 ϕ(X1,X2) = X1, ϕ(X1,X6) = −X2, ϕ(X2,X6) = X6,

ϕ(X3,X4) = −νX5, ϕ(X3,X5) = X4, ϕ(X4,X5) = −νX3

g6,91 ϕ(X1,X2) = X1, ϕ(X1,X6) = −X2, ϕ(X2,X6) = X6,

ϕ(X3,X4) = −νX5, ϕ(X3,X5) = X4, ϕ(X4,X5) = −νX3

g6,92 ϕ(X1,X2) = μX2, ϕ(X1,X3) = μX3, ϕ(X1,X4) = −μX4,

ϕ(X1,X5) = −μX5, ϕ(X2,X5) = X6, ϕ(X3,X4) = −μ
ν X6

g∗
6,92 ϕ(X1,X2) = X6, ϕ(X1,X5) = X2, varphi(X2,X5) = −X1,

ϕ(X3,X4) = X6, ϕ(X3,X5) = X4, ϕ(X4,X5) = −X3

g6,93 ϕ(X1,X2) = ν2X4, ϕ(X1,X3) = −ν2X5, ϕ(X1,X4) = ν2X2,

ϕ(X1,X5) = −ν2X3, ϕ(X2,X4) = X6, ϕ(X2,X5) = −νX6,

ϕ(X3,X4) = νX6

This algebra admits the (un-symmetrized) quadratic Casimir operator

C = x1x9 + 2(x2x10 − x3x8) + x4x7 − x5x6,

which is non-degenerate. Computing the second cohomology group of g we obtain that

dimZ2(g,g) = dimB2(g,g) = 86,

showing that H 2(g,g) = 0 and therefore that g is stable. Thus this algebra does not arise
as a contraction [19]. We remark that this algebra is the lowest dimensional example of a
non-reductive rigid quasi-classical Lie algebra with nonzero Levi subalgebra.

4 Generalized Inönü-Wigner Contractions onto QCLAs

Since any Lie algebra contracts onto the Abelian Lie algebra of its same dimension, and the
latter is trivially quasi-classical, we have that a Lie algebra g that contracts onto a quasi-
classical algebra g′ is not necessarily endowed with a non-degenerate inner product. How-
ever, the question turns more interesting if we discard the Abelian algebras, i.e., if we require
that g′ is not Abelian. Even in this form, the question is still too general and can be answered
easily in the negative. Any reductive Lie algebra s ⊕ nL1 is always a contraction of a non
quasi-classical Lie algebra. It suffices to consider the algebra g = s ⊕ n

2 r2 if n is even and
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g = s ⊕ h n−1
2

if n is odd, where r2 is the non-Abelian algebra in dimension 2 and h n−1
2

is the
Heisenberg algebra of dimension n. Both algebras are easily seen to contract onto s ⊕ nL1,
and none of them is quasi-classical since their quadratic Casimir operators are degenerate.

In order to eliminate these trivial cases, we can reformulate the question in the following
form:

Problem 1 If g′ is an indecomposable quasi-classical Lie algebra and g a Lie algebra con-
tracting nontrivially onto it, i.e., g � g′, under which conditions g is also quasi-classical?

First of all, a QCLA can be the contraction of an algebra that has no Casimir operators
(in the classical sense) at all. To this extent, let rα

6,38 be the solvable Lie algebra given by the
brackets

[X2,X3] = X1, [X1,X6] = 2αX1, [X2,X6] = αX2 + X3 + X4,

[X3,X6] = −X2 + αX3 + X5, [X4,X6] = αX4 + X5, [X5,X6] = −X4 + αX5.

This algebra has two invariants, which can be chosen as

I1 = (x2
4 + x2

5 )

(

x4 − ix5

x4 + ix5

)iα

, I2 = x1 exp(−2α arctan(x4x
−1
5 )).

Now consider the family of automorphism ft : rα
6,38 → rα

6,38 defined by

ft (Xi) = X′
i = t2Xi, i = 1,4,5,

ft (Xi) = X′
i = tXi, i = 2,3,6.

The brackets over the transformed basis are:

[X′
2,X

′
3] = X′

1, [X′
1,X

′
6] = 2tαX′

1,

[X′
2,X

′
6] = αtX′

2 + tX′
3 + X′

4, [X′
3,X

′
6] = −tX′

2 + αtX′
3 + X′

5,

[X′
4,X

′
6] = αt2X′

4 + tX′
5, [X′

5,X
′
6] = −tX′

4 + αtX′
5.

For t → 0, all brackets but

[X′
2,X

′
3] = X′

1, [X′
2,X

′
6] = X′

4, [X′
3,X

′
6] = X′

5

vanish, and the resulting algebra is nilpotent and isomorphic to A6,3. The main observation
is that the quadratic Casimir operator of A6,3 does not arise as the limit of a rα

6,38 invariant.
This happens because the contraction does not preserve the number N of invariants [4]. This
fact suggests a refinement of the problem:

Refinement 1 If g′ is an indecomposable quasi-classical Lie algebra and g a Lie algebra
contracting nontrivially onto it, such that the number of independent invariants is preserved,
i.e., N (g) = N (g′), under which conditions g is also quasi-classical?

By this assumption, we guarantee that a fundamental system of invariants of the con-
traction can be obtained by a limiting process of a system of invariants of the contracted
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algebra [6]. However, even in this case, a QCLA is not necessarily the contraction of an-
other quasi-classical algebra, as the following example shows: Let r

−2
6,94 be the solvable Lie

algebra given by

[X3,X4] = X1, [X2,X5] = X1, [X3,X5] = X2, [X2,X6] = −X2,

[X3,X6] = −2X3, [X4,X6] = 2X4, [X5,X6] = X5.

It has the cubic Casimir operator C3 = x2
1x6 + x1x2x5 + 2x1x3x4 − x2

2x4. Taking the contrac-
tion determined by the automorphism

�(X1) = 1

t2
X1, �(Xi) = 1

t
Xi, i = 2, . . . ,5, �(X6) = X6,

we obtain that

lim
t→∞

1

t4
(C3 ◦ �) = x1(x1x6 + x2x5 + 2x3x4),

showing that the contraction is quasi-classical. This situation arises whenever we have a
nontrivial centre and a cubic operator that decomposes as the product of a non-degenerate
quadratic polynomial with the generator of the centre and some additional cubic term in-
dependent of the centre generator that vanishes during the contraction. A similar situation
holds for higher dimensional operators and nonzero centre. The remaining case is to see
whether a quadratic invariant which involves all generators of the algebra but is degenerate
as bilinear form can contract onto a non-degenerate quadratic Casimir operator.

Theorem 1 Let g′ be an indecomposable QCLA and g � g′ a nontrivial contraction such
that

(i) N (g) = N (g′),
(ii) the non-degenerate quadratic Casimir operator ̂C of g′ is the limit of a quadratic oper-

ator C of g.

Then C is non-degenerate and g quasi-classical.

Proof By assumption, the quadratic Casimir operator ̂C of g′ is obtained by a limiting
process from a quadratic Casimir operator of g. Let C = gijXiXj be the (symmetrized)
quadratic Casimir of g. Suppose that the automorphism �t of g defining the contraction is
given by the matrix:

(X′
1, . . . ,X

′
n) =

⎛

⎜

⎝

α1
1 t

m1
1 · · · α1

nt
m1

n

...
...

αn
1 tm

n
1 · · · αn

nt
mn

n

⎞

⎟

⎠

⎛

⎝

X1
...

Xn

⎞

⎠ ,

where m
j

i ∈ Z for all 1 ≤ i, j ≤ n. Since the matrix is invertible, we can find βk
i ∈ R such

that

Xi = βk
i t

mk
i X′

k, 1 ≤ i ≤ n.

Over the transformed basis {X′
1, . . . ,X

′
n}, the operator C takes the form

C = gijXiXj = gijβi
kβ

j

l tm
i
k
+m

j
l X′

iX
′
j . (16)
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Let M = max{mj

i + ml
k | 1 ≤ i, j, k, l ≤ n}. Let us write gij (t) := gijβi

kβ
j

l tm
i
k
+m

j
l for all

1 ≤ i, j ≤ n. These are polynomials in t of degree at most M , so that we can find γ
ij
p ∈ R

for p = 0, . . . ,M such that gij (t) = γ
ij

0 tM + γ
ij

1 tM−1 + · · · + γ
ij

M . We can therefore rewrite
(16) in matrix form C = (X′

1, . . . ,X
′
n)A(X′

1, . . . ,X
′
n)

T , where A is the (polynomial) matrix

A =
⎛

⎜

⎝

γ 11
0 tM + γ 11

1 tM−1 + · · · + γ 11
M . . . γ n1

0 tM + γ n1
1 tM−1 + · · · + γ n1

M

...
...

γ 1n
0 tM + γ 1n

1 tM−1 + · · · + γ 1n
M . . . γ nn

0 tM + γ nn
1 tM−1 + · · · + γ nn

M

⎞

⎟

⎠
. (17)

Using elementary properties of determinants, det(A) can be written as a polynomial in t of
degree at most 2M :

det(A) = �0t
2M + �1t

2M−1 + · · · + �2M−1t + �2M. (18)

Now, if C were a degenerate operator, then for all t the rank of A is less than n, and in
particular det(A) = 0. But since (18) has at most 2M roots, degeneracy implies that �k = 0
for k = 0, . . . ,2M . By contraction, we have that

lim
t→∞

1

tM
C = ̂C

is the quadratic invariant of g′. However, if all �k vanish, then ̂C must also be a degenerate
operator, contradicting the assumption. Therefore, non-degeneracy of ̂C is only possible if
C is non-degenerate, proving that g is also a quasi-classical Lie algebra. �

Corollary 2 Let g � g′ be a non-trivial generalized Inönü-Wigner contraction and C a
non-degenerate quadratic Casimir operator of g. If C remains invariant by the contraction,
then g′ is quasi-classical.

5 Contraction of Yang-Mills Equations

In view of the preceding theorem, it is worthy to analyze what happens if one tries to com-
pare the behavior of the Yang-Mills equations over quasi-classical Lie algebras g and g′ re-
lated by a non-trivial contraction g � g′. Let C = gijXiXj be the quadratic non-degenerate
Casimir operator of g. If we consider a generalized Inönü-Wigner contraction

X′
i = t−ni Xi, 1 ≤ i ≤ n,

then over the transformed basis the operator has the form

C ′ = gij tni+nj X′
iX

′
j .

Let M = max{ni + nj | gij �= 0}. According to this, the Casimir operator C ′ can be decom-
posed as

C ′ =
∑

ni+nj =M

tni+nj gijX′
iX

′
j +

∑

ni+nj <M

tni+nj gijX′
iX

′
j . (19)
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Since t−MC ′ is also a non-degenerate quadratic operator on g, it follows from Theorem 1
that

lim
t→∞

1

tM
C ′ =

∑

ni+nj =M

gijX′
iX

′
j (20)

is a non-degenerate quadratic Casimir operator of g′. In particular, the non-degenerate bi-
linear symmetric associative form on g′ is given by the matrix (gij ), where the condition
ni + nj = M holds. Over the transformed basis {X′

1, . . . ,X
′
n} of g we have the gauge fields

Aμ(x) = tnαXαA
α
μ(x), (21)

Fμν(x) = ∂μAv(x) − ∂νAμ(x) + [Aμ(x),Aν(x)], (22)

where in this case

[Aμ(x),Aν(x)] = tnr−np−nq Cr
pqA

p
μ(x)Aq

ν (x)X′
r . (23)

Taking into account that the latter bracket can be decomposed as

[Aμ(x),Aν(x)] =
∑

nr−np−nq=0

Cr
pqA

p
μ(x)Aq

ν (x)X′
r

+
∑

nr−np−nq<0

tnr−np−nq Cr
pqA

p
μ(x)Aq

ν (x)X′
r , (24)

we obtain that for t → ∞ the limit of Fμν(x) equals

Fμν(x)′ lim
t→∞Fμν(x) = ∂μAv(x) − ∂νAμ(x) +

∑

nr−np−nq=0

Cr
pqA

p
μ(x)Aq

ν (x)X′
r . (25)

On the other hand, the Lagrangian on g is given by

L(x) =
∑

ni+nj =M

gijFμν,iF
μν

,j +
∑

ni+nj <M

tni+nj −MgijFμν,iF
μν

,j . (26)

Again, considering the limit, L(x) goes over to

L′(x) = lim
t→∞L(x) =

∑

ni+nj =M

gijFμν,iF
μν

,j , (27)

equation that reproduces the Lagrangian of g′ with respect to the bilinear form defined by the
quadratic operator limt→∞ 1

tM
C ′. In this sense, the equations of motion of the Yang-Mills

equations of g′ can be recovered from the limit (for t → ∞) of the equations of motion
(4) corresponding to g. It is interesting that by this contraction procedure, we can obtain a
large hierarchy of Lagrangians corresponding to non-isomorphic Lie algebras, starting from
a suitable Lie algebra.1

1Before taking the limit the Lagrangians are equivalent, for corresponding to a rescaling transformation of
the group generators.
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To illustrate this fact, consider the contraction so(3,1) � g
α=0,η≥2
6,93 of the Lorentz al-

gebra onto the quasi-classical solvable Lie algebra g
0,η

6,93 (see Table 2). We choose a basis
{X1, . . . ,X6} of the Lorentz algebra such that the brackets are given by

[X1,X2] = η2X4, [X1,X3] = −η2X5, [X1,X4] = η2X2, [X1,X5] = −η2X3,

[X2,X4] = X1 + X6, [X2,X5] = −ηX6, [X2,X6] = X4 + ηX5, [X3,X4] = ηX6,

[X3,X5] = X1, [X3,X6] = ηX4, [X4,X6] = X2 − ηX3, [X5,X6] = −ηX2,

where η ≥ 2. Considering the automorphism given by

X′
1 = 1

t2
X1, X′

i = 1

t
Xi (2 ≤ i ≤ 5), X′

6 = X6 (28)

it follows at once that for t → ∞ we obtain the quasi-classical solvable Lie algebra g
0,η

6,93
of Table 1. Over the transformed basis {X′

1, . . . ,X
′
6} the (symmetrized) quadratic Casimir

operator of so(3,1) can be chosen as

C = −2X′
1X

′
6 + 2η(X′

2X
′
3 + X′

4X
′
5) + (X′2

4 − X′2
2 ) − 1

t2
X′2

6 , (29)

which in the limit provides the quadratic invariant of g
0,η

6,93. Constructing the Lagrangian
from the bilinear form gab determined by the previous Casimir operator, we obtain

L(x) = −Fμν,1(x)F
μν

6 + 2η(Fμν,2(x)F
μν

3 + Fμν,4F
μν

,5 )

+ (Fμν,4F
μν

,4 − Fμν,2F
μν

,2 ) − 1

t2
Fμν,6(x)F

μν

6 , (30)

where in this case

Fμν(x) = ∂μAν(x) − ∂νAμ(x) + (A2
μ(x)A4

ν(x) + A3
μ(x)A5

ν(x))X′
1

+
(

η2

t
A1

μ(x)A4
ν(x) + A4

μ(x)A6
ν(x) − ηA5

μ(x)A6
ν(x)

)

X′
2

−
(

η2

t
A1

μ(x)A5
ν(x) + ηA4

μ(x)A6
ν(x)

)

X′
3

+
(

η2

t
A1

μ(x)A4
ν(x) + A2

μ(x)A6
ν(x) + ηA3

μ(x)A6
ν(x)

)

X′
4

+
(−η2

t
A1

μ(x)A3
ν(x) + ηA2

μ(x)A6
ν(x)

)

X′
5

+
(

− η

t2
A2

μ(x)A5
ν(x) + η

t2
A3

μ(x)A4
ν(x) + 1

t2
A2

μ(x)A4
ν(x)

)

X′
6. (31)

In the limit, t → ∞ seven terms in (31) vanish, and the result is the corresponding Fμν(x) for
the contraction g

0,η

6,93. We remark that, although (30) and (31) are related to the Lorentz alge-
bra for all values of η, after the contraction the Lagrangian and the gauge fields correspond
to non-isomorphic Lie algebras. Therefore the contraction of the Yang-Mills equations of a
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simple algebra give rise to the corresponding problem on a parameterized family of solv-
able Lie algebras. In this construction, the parameter η introduced as a scaling factor before
contraction, becomes an essential parameter after it, determining the isomorphism class of
the Lie algebra on which the gauge fields take their values. It should be expected that this
parameter plays also a role in comparing the solutions for the different non-isomorphic con-
tractions, starting from the solutions to the original equation.

Concluding Remarks

After analyzing various properties of general quasi-classical Lie algebras, concretely nilpo-
tent and non-solvable Lie algebras with nontrivial Levi subalgebra, and classifying them in
low dimension (up to dimension 6 for the solvable case, and 9 for the non-solvable case),
we have shown that a quasi-classical algebra is not necessarily the contraction of a reductive
algebra, as suggested by the classification in low dimension. The existence of stable QCLAs
that are not reductive leads to search for criteria to ensure that a quasi-classical algebra is
the contraction of another Lie algebra with the same property. Discarding the trivial Abelian
case, we have seen that non-degenerate quadratic Casimir operators may arise in different
forms, from algebras having only pure transcendental invariants or having Casimir invari-
ants of third or higher order. The existence of a non-trivial centre plays a central role, since it
allows higher order operators to split into the product of a non-degenerate quadratic invari-
ant and a linear one. We remark that this decomposability pattern is typical in the contrac-
tion of Casimir operators of Lie algebras [8]. However, in the case that the (non-degenerate)
quadratic Casimir invariant of the contraction is obtained as the limit of a quadratic operator,
this necessarily implies that the contracting algebra also possesses a non-degenerate form.
This fact is applied to compare the corresponding Yang-Mills equations before and after
contraction, and provides parameterized families of Lagrangians related to non-isomorphic
Lie algebras in the contraction. This fact allows, under suitable conditions, to analyze the so-
lutions for these families as a limit of the solutions before applying the limit process. In the
case of contractions of reductive Lie algebras, the terms that vanish during the contraction
are responsible for the appearance of ghost states when quantized. This method of generat-
ing families from one fixed algebra could be of interest for the problem of existence of flat
potentials or the asymptotics approach applied to contractions of simple compact Lie alge-
bras [2]. In particular, for special values of the parameters some additional features could
appear, such as non-flatness of Yang-Mills potentials [16].

References

1. Bollini, C.G., Giambigi, J.J.: Zeitschrift Physik C 22, 257 (1984)
2. Bohr, H., Buchner, K.: Tensor N. S. 43, 66 (1986)
3. Boyko, V., Patera, J., Popovych, R.: J. Phys. A: Math. Gen. 39, 5749 (2006)
4. Campoamor-Stursberg, R.: Acta Phys. Polonica B 34, 3901 (2003)
5. Campoamor-Stursberg, R.: J. Phys. A: Math. Gen. 36, 1357 (2003)
6. Campoamor-Stursberg, R.: Phys. Lett. A 327, 138 (2004)
7. Campoamor-Stursberg, R.: Algebra Colloquium 12, 497 (2005)
8. Campoamor-Stursberg, R.: Oberwolfach Rep. 3, 174 (2006)
9. Casimir, H.: Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 34,

p. 144 (1931)
10. Das, A.: Integrable Models. World Scientific, Singapore (1989)
11. de Azcárraga, J.A., Izquierdo, J.M.: Lie Groups, Lie Algebras, Cohomology and some Applications to

Physics. Cambridge University Press, Cambridge (1995)



598 Int J Theor Phys (2008) 47: 583–598

12. Doebner, H.D., Melsheimer, O.: Il Nuovo Cimento A 49, 306 (1967)
13. Favre, G., Santharoubane, L.J.: J. Algebra 105, 451 (1987)
14. Goze, M.: In: Deformation Theory of Algebras and Structures and Applications, p. 265. Kluwer Acad-

emic, Amsterdam (1988)
15. Huddleston, P.L.: J. Math. Phys. 19, 1645 (1978)
16. Mundt, E.: Semin. Sophus Lie 3, 107 (1993)
17. Myung, H.C.: Mal’cev Admissible Algebras. Birkhäuser, Boston (1986)
18. Nappi, C., Witten, E.: Phys. Rev. Lett. 71, 3751 (1993)
19. Nijenhuis, A., Richardson, R.W.: Bull. Am. Math. Soc. 72, 1 (1966)
20. Okubo, S.: Hadron. J. 3, 1 (1979)
21. Okubo, S.: J. Phys. A: Math. Gen. 31, 7603 (1998)
22. Okubo, S., Kamiya, N.: Commun. Algebra 30, 3825 (2002)
23. Patera, J., Sharp, R.T., Winternitz, P., Zassenhaus, H.: J. Math. Phys. 17, 986 (1976)
24. Popov, A.D.: Teoreticheskaya Matematicheskaya Fizika 43, 402 (1991)
25. Schimming, R., Mundt, E.: J. Math. Phys. 33, 4250 (1992)
26. Slavnov, A.A., Faddeev, L.D.: Vvedenie v Kvantovuyu Teoriyu Kalibrovochnykh Polei. Nauka, Moskva

(1978)
27. Trofimov, V.V.: Trudy Semimara po Vektornomu i Tenzornomu Analizu, vol. 12, p. 84 (1983)
28. Turkowski, P.: J. Math. Phys. 29, 2139 (1988)
29. Turkowski, P.: Linear Algebra Appl. 171, 197 (1992)
30. Weimar-Woods, E.: In: Proc. XXI Int. Colloq. Group Theoretical Methods in Physics (Goslar), vol. 1,

p. 132. World Scientific, Singapore (1996)
31. Weimar-Woods, E.: Rev. Math. Phys. 12, 1505 (2000)


	Quasi-Classical Lie Algebras and their Contractions
	Abstract
	Introduction
	Quasi Classical Lie Algebras
	Classification of QCLAs up to Dimension 6
	Generalized Inönü-Wigner Contractions onto QCLAs
	Contraction of Yang-Mills Equations
	Concluding Remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


